ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Network Security and Cryptography(2022)[Musa][9781683928836].pdf

دانلود کتاب امنیت شبکه و رمزنگاری (2022)[موسی][9781683928836].pdf

Network Security and Cryptography(2022)[Musa][9781683928836].pdf

مشخصات کتاب

Network Security and Cryptography(2022)[Musa][9781683928836].pdf

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781683928836, 2022941507 
ناشر:  
سال نشر: 2022 
تعداد صفحات: [611] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 20 Mb 

قیمت کتاب (تومان) : 32,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Network Security and Cryptography(2022)[Musa][9781683928836].pdf به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب امنیت شبکه و رمزنگاری (2022)[موسی][9781683928836].pdf نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب امنیت شبکه و رمزنگاری (2022)[موسی][9781683928836].pdf

امنیت شبکه و رمزنگاری (2022)[موسی][9781683928836].pdf


توضیحاتی درمورد کتاب به خارجی

Network Security and Cryptography(2022)[Musa][9781683928836].pdf



فهرست مطالب

Cover
Half-Title
Title
Copyright
Dedication
Contents
Preface
Chapter 1: Overview of Computer Networks
	1.1 Introduction
	1.2 Open Systems Interconnection (OSI) Model
	1.3 Transmission Control Protocol/Internetworking Protocol (TCP/IP) Model
	1.4 Hierarchical Model
	1.5 Computer Network Equipment
	1.6 Computer Network Types
	1.7 Computer Network Topology
	1.8 Exercises
Chapter 2: Mathematical Foundations for Computer Networks
	2.1 Introduction
	2.2 Probability Fundamentals
		2.2.1 Simple Probability
		2.2.2 Joint Probability
		2.2.3 Conditional Probability
		2.2.4 Statistical Independence
	2.3 Random Variables
		2.3.1 Cumulative Distribution Function
		2.3.2 Probability Density Function
		2.3.3 Joint Distribution
	2.4 Discrete Probability Models
		2.4.1 Bernoulli Distribution
		2.4.2 Binomial Distribution
		2.4.3 Geometric Distribution
		2.4.4 Poisson Distribution
	2.5 Continuous Probability Models
		2.5.1 Uniform Distribution
		2.5.2 Exponential Distribution
		2.5.3 Erlang Distribution
		2.5.4 Hyperexponential Distribution
		2.5.5 Gaussian Distribution
	2.6 Transformation of a Random Variable
	2.7 Generating Functions
	2.8 Central Limit Theorem
	2.9 Classification of Random Processes
		2.9.1 Continuous versus Discrete Random Process
		2.9.2 Deterministic versus Non-Deterministic Random Process
		2.9.3 Stationary versus Nonstationary Random Process
		2.9.4 Ergodic versus Nonergodic Random Process
	2.10 Statistics of Random Processes and Stationarity
	2.11 Time Averages of Random Processes and Ergodicity
	2.12 Multiple Random Processes
	2.13 Sample Random Processes
		2.13.1 Random Walks
		2.13.2 Markov Processes
		2.13.3 Birth-and-Death Processes
		2.13.4 Poisson Processes
	2.14 Renewal Processes
	2.15 Kendall’s Notation
	2.16 Little’s Theorem
	2.17 M/M/1 Queue
	2.18 M/M/1 Queue With Bulk Arrivals/Service
		2.18.1 Mx/M/1 (Bulk Arrivals) System
		2.18.2 M/MY/1 (Bulk Service) System
		2.18.3 M/M/1/k Queueing System
		2.18.4 M/M/k Queueing System
		2.18.5 M/M/∞ Queueing System
	2.19 M/G/1 Queueing SYSTEM
	2.20 M/Ek/1 Queueing SYSTEM
	2.21 Networks of Queues
		2.21.1 Tandem Queues
		2.21.2 Queueing System with Splitting
		2.21.3 Queueing System with Feedback
	2.22 Jackson Networks
	2.23 Exercises
Chapter 3: Overview of Cryptography
	3.1 Introduction
	3.2 Basic Terms Related to Cryptography
		3.2.1 Cryptographic Primitives
		3.2.2 Cryptographic Protocols
		3.2.3 Encryption (at the Sender’s End)
		3.2.4 Decryption (at the Recipient’s End)
	3.3 Requirements of Secure Communication
	3.4 Osi Security Architecture X.800
		3.4.1 Security Attacks
		3.4.2 Security Services
		3.4.3 Security Mechanisms
	3.5 Categories of Cryptographic Systems
	3.6 Symmetric (or Conventional) Encryption Model
		3.6.1 Types of Attacks on a Conventional Encryption Scheme
		3.6.2 Conventional Encryption for Confidentiality
		3.6.3 Link Encryption
	3.7 Exercises
Chapter 4: Mathematical Foundations for Cryptography
	4.1 Introduction
	4.2 Introduction to Groups, Rings, and Fields
		4.2.1 Groups
		4.2.2 Ring
		4.2.3 Field
	4.3 Modular Arithmetic
		4.3.1 Residue Classes (mod n)
		4.3.2 Properties of Zn
		4.3.3 Multiplication within Set Zn
	4.4 Introduction to Primes and Co-Primes
		4.4.1 Prime Numbers
		4.4.2 Co-Prime Numbers or Relatively Prime Numbers
	4.5 Euclid’s Algorithm To Determine GCD
	4.6 Extended Euclid’s Algorithm
	4.7 Galols Finite Fields
		4.7.1 GF (p)
		4.7.2 Set Z*p
		4.7.3 Galois Finite Fields of Order 2n
		4.7.4 Arithmetic Operations within GF (2n)
		4.7.5 Addition (+) Operation within GF (23)
		4.7.6 Addition Inverse of GF (23)
		4.7.7 Multiplication (x) Operation within GF (23) Using m(x) = x3 + x2 + 1 for Reducing the Polynomials
		4.7.8 Multiplication Inverse within GF (23)
		4.7.9 Multiplicative Inverses of All Integers in GF (23)
	4.8 Fermat’s Little Theorem
		4.8.1 A Corollary of Fermat’s Little Theorem
	4.9 Euler’s Totient Function
		4.9.1 General Formula for Computation of Totient Function ϕ(n)
	4.10 Euler’s Theorem
		4.10.1 A Corollary of Euler’s Theorem
	4.11 Prime Numbers
		4.11.1 Primitive Roots
	4.12 Discrete Logarithms
		4.12.1 Difficulty of Computing Discrete Logarithms
		4.12.2 Algorithm to Determine the Primitive Roots of a Number n
		4.12.3 Another Method of Determining the Primitive Roots of a Number n
	4.13 Primality Testing
		4.13.1 Miller and Rabin’s Method
	4.14 Chinese Remainder Theorem
		4.14.1 Alternate Interpretation of the Chinese Remainder Theorem
	4.15 Exercises
Chapter 5: Classical Cipher Schemes
	5.1 Introduction
	5.2 Classical Substitution Ciphers
		5.2.1 Caesar Cipher
		5.2.2 Mono-Alphabetic Cipher
		5.2.3 Hill Cipher
		5.2.4 Play-Fair Cipher
		5.2.5 Poly-Alphabetic Cipher (Vigenere Cipher)
		5.2.6 One-Time Pad
	5.3 Transposition Ciphers
		5.3.1 Rail-Fence Cipher
		5.3.2 Rectangular Transposition Cipher
	5.4 Steganography
		5.4.1 Limitation of Steganography
		5.4.2 Steganography Combined with Cryptography
	5.5 Exercises
Chapter 6: Modern Symmetric Ciphers
	6.1 Introduction
	6.2 Some Basic Concepts for Symmetric Ciphers
		6.2.1 Concept of Binary Block Substitution
		6.2.2 Strength of the Substitution Cipher
		6.2.3 Key Size for the Simple Substitution Cipher
	6.3 Claude Shannon’s Theory of Diffusion and Confusion
		6.3.1 Diffusion
		6.3.2 Confusion
	6.4 Feistel Cipher
		6.4.1 Strength of the Feistel Cipher
	6.5 Data Encryption Standard (DES)
		6.5.1 Description of the Critical Functions of Each Round of DES
		6.5.2 S-Box Transformation
		6.5.3 Generation of Sub-Keys (K1... K16)
		6.5.4 DES Decryption Algorithm
	6.6 Avalanche Effect
		6.6.1 Strength of DES
		6.6.2 Possible Attacks on DES
		6.6.3 Differential Cryptanalysis vs. Linear Cryptanalysis
	6.7 Multiple Des
		6.7.1 Double DES
		6.7.2 Triple DES
		6.7.3 Block Cipher vs. Stream Cipher
		6.7.4 Block/Stream Cipher Modes of Operation
	6.8 International Data Encryption Algorithm (IDEA)
		6.8.1 Description of IDEA
		6.8.2 Generation of Sub-Keys in IDEA
		6.8.3 IDEA Modes of Operation
	6.9 Advanced Encryption Standard (AES)
		6.9.1 Processing of Plaintext
	6.10 Key Management: Symmetric Encryption
		6.10.1 Secure Distribution of Keys
		6.10.2 Key Distribution Schemes
	6.11 Pseudo-Random Number Generators
		6.11.1 Pseudo-Random Number Generation (PRNG) Algorithms
	6.12 Exercises
Chapter 7: Public-Key Cryptography for Data Confidentiality
	7.1 Introduction
	7.2 Requirements of Public-Key Cryptography
	7.3 Data Confidentiality Using Public-Key Cryptography
	7.4 RSA Algorithm
		7.4.1 Main Components
		7.4.2 Strength of RSA
	7.5 Key Management Using Public-Key Cryptography
		7.5.1 Diffie-Hellman Algorithm for Key Distribution
		7.5.2 Global Parameters
		7.5.3 Strength of Diffie-Hellman Key-Exchange Scheme
		7.5.4 Types of Attacks against Diffie-Hellman
	7.6 El-Gamal Encryption Scheme
		7.6.1 Determination of Private Key and Public Key (by User “A”)
	7.7 Elliptic Curve Cryptography (ECC)
		7.7.1 Elliptic Curves
		7.7.2 Elliptic Curves in Cryptography (ECC)
		7.7.3 Prime Elliptic Curves
		7.7.4 Prime Elliptic Curve Set
		7.7.5 Computation of Elliptic Curve Set E11 (1, 1)
		7.7.6 Rules for Addition (+) Operation over EP (a, b)
		7.7.7 Multiplication over the Set EP (a, b)
		7.7.8 Strength of ECC-Based Schemes
		7.7.9 ECC-Based Key-Exchange Algorithm
		7.7.10 Strength of ECC Key-Exchange Algorithm
		7.7.11 ECC-Based Encryption/Decryption Scheme
		7.7.12 Strength of ECC-based Encryption/Decryption Scheme
		7.7.13 ECC Encryption/Decryption vs. RSA
		7.7.14 Efficient Hardware Implementation
	7.8 Exercises
Chapter 8: Authentication Schemes
	8.1 Introduction
	8.2 What is Message Authentication?
	8.3 Types of Authentication Services
		8.3.1 Different Techniques of Message Authentication
		8.3.2 Digital Signatures Using Public-Key Cryptography
		8.3.3 Message Authentication Code (MAC)
		8.3.4 Many-to-One Relationship between Messages and MAC Values
		8.3.5 Use of MAC for Message Authentication
		8.3.6 Chosen Plaintext Attack on MAC
		8.3.7 Hash Function
	8.4 Application Modes of Digital Signatures
		8.4.1 Direct Digital Signature
		8.4.2 Arbitrated Digital Signature
	8.5 Authentication Protocols
		8.5.1 Mutual Authentication
		8.5.2 Symmetric Encryption Approaches
		8.5.3 Needham Schroeder Protocol
		8.5.4 Denning Protocol
		8.5.5 NEUM Protocol
		8.5.6 Public-Key Encryption Approaches
		8.5.7 One-Way Authentication
		8.5.8 Symmetric Encryption Approach
		8.5.9 Public Key Encryption Approach
		8.5.10 The Birthday Paradox
		8.5.11 Probability of Two Sets Overlapping
		8.5.12 Mathematical Basis for Birthday Attack
		8.5.13 Birthday Attack
		8.5.14 Verification of the Digital Signature at the Recipient End
		8.5.15 How to Create Many Variants of a Message
		8.5.16 Weak Collision Resistance
		8.5.17 Strengths of Hash Functions
	8.6 Message Digest (Hash Function) Algorithms
		8.6.1 MD5 Message Digest Algorithm
		8.6.2 Sequence of Use of Message Words in Various Rounds
		8.6.3 Primitive Logical Functions Used in Various Rounds
		8.6.4 Strength of MD5
	8.7 Secure Hash Algorithm (SHA-1)
		8.7.1 Difference between MD5 and SHA-1
		8.7.2 Various Upgrades of SHA
	8.8 Digital Signature Schemes
		8.8.1 RSA Digital Signature Scheme
		8.8.2 ElGamal’s Digital Signature Scheme
		8.8.3 Digital Signature Algorithm (DSA)
		8.9 Exercises
Chapter 9: Centralized Authentication Service
	9.1 Introduction
	9.2 Centralized Authentication Service
	9.3 Motivation for Centralized Authentication Service
	9.4 Simple Authentication Exchange in Open Environment
		9.4.1 Problems with Simple Authentication Exchange
		9.4.2 Full-Service Kerberos Environment (Kerberos Realm)
		9.4.3 Kerberos Version 4
	9.5 Architecture of Kerberos V.4
		9.5.1 lnter-Kerberos Authentication
		9.5.2 Kerberos Version 5 Authentication Sequence
		9.5.3 Differences between Kerberos V.4 and Kerberos V.5
	9.6 Exercises
Chapter 10: Public Key Infrastructure (PKI)
	10.1 Introduction
	10.2 Format of X.509 Certificate
		10.2.1 Version.3 Extensions
	10.3 Hierarchical Organization of Certification Authorities (CAs)
	10.4 Creation of Certificates’ Chain for CA’s Signature Verification
	10.5 Revocation of X.509 Certificates
		10.5.1 Rules for Revocation
	10.6 Authentication Procedures Defined in X.509
	10.7 Exercises
Chapter 11: Pretty Good Privacy
	11.1 Introduction
	11.2 Services Supported by Pretty Good Privacy (PGP)
		11.2.1 Implementation of the Security Services in PGP
		11.2.2 Functions at the Sender End and at the Recipient End
		11.2.3 Placement of Compression/Decompression Functions in PGP
	11.3 Radix-64 (R64) Transformation
		11.3.1 Segmentation and Reassembly
	11.4 Concept of the Public Key Ring and Private Key Ring in PGP
		11.4.1 Fields of the Private Key Ring
		11.4.2 Generation of Session Keys
		11.4.3 Use of Key Rings in Authentication
		11.4.4 Use of Key Rings in Data Confidentiality
		11.4.5 The Trust Model for Management of Public Keys in PGP
	11.5 S/Mime (Secure/Multipurpose Internet Mail Extension)
		11.5.1 S/Mime Functionality
	11.6 Exercises
Chapter 12: Internet Security Services
	12.1 Introduction
	12.2 Internet Protocol Security (IPSec)
	12.3 Services Provided by IPSec
		12.3.1 IPSec Headers
		12.3.2 Authentication Header (AH)
		12.3.3 AH Fields
		12.3.4 Algorithm for Generation of Integrity Check Value (ICV)
		12.3.5 Encapsulating Security Payload (ESP)
	12.4 Security Association (SA)
		12.4.1 SA Parameters
	12.5 Security Policies
		12.5.1 Security Policy Database (SPD)
		12.5.2 Security Association Selectors (SA Selectors)
		12.5.3 Combining of Security Associations
		12.5.4 IPSec Protocol Modes
		12.5.5 Tunnel Mode
		12.5.6 Anti-Replay Window
		12.5.7 IPSec Key Management
		12.5.8 Features of Oakley Key-Exchange Protocol
	12.6 ISAKMP
		12.6.1 Payload Types
		12.6.2 Important IPSec Documents
	12.7 Secure Socket Layer/Transport Layer Security (SSL/TLS)
		12.7.1 Components of SSL
		12.7.2 SSL Handshake Protocol
		12.7.3 SSL Change Specs Protocol
		12.7.4 SSL Alerts Protocol
		12.7.5 SSL Record Protocol
		12.7.6 Some Terms Related to SSL
		12.7.7 Transport Layer Security (TLS)
		12.7.8 TLS Record Protocol
		12.7.9 TLS Handshake Protocol
	12.8 Secure Electronic Transaction
		12.8.1 Business Requirements of SET
	12.9 Key Features of Set
		12.9.1 Use of Public Key Certificates in SET
		12.9.2 Sequence of Events in SET
		12.9.3 Payment Capture
	12.10 Exercises
Chapter 13: System Security
	13.1 Introduction
	13.2 Intruders
	13.3 Intrusion Detection
		13.3.1 Intrusion Detection Techniques
	13.4 Password Management
	13.5 Malicious Programs
		13.5.1 Different Phases in the Lifetime of a Virus
	13.6 Anti-Virus Scanners
		13.6.1 Different Generations of Anti-Virus Scanners
	13.7 Worms
	13.8 Firewall
		13.8.1 Firewall Characteristics
		13.8.2 Firewall Techniques to Control Access
	13.9 Types of Firewalls
		13.9.1 Firewall Configurations
	13.10 Trusted Systems
	13.11 Exercises
Chapter 14: Security of Emerging Technology
	14.1 Introduction
	14.2 Security of Big Data Analytics
		14.2.1 Big data analysis can transform security analytics in the following ways:
		14.2.2 Big data analytics for security issues and privacy challenges:
	14.3 Security of Cloud Computing
		14.3.1 Cloud Deployment models:
		14.3.2 The three layers of the Cloud computing services model (Software, Platform or Infrastructure (SPI) Model):
		14.3.3 Security concerns and challenges of Cloud computing:
		14.3.4 Cloud Security as Consumer Service:
	14.4 Security of Internet of Things (IoT)
		14.4.1 Evolution of IoT
		14.4.2 Building Blocks of the Internet of Things (IoT)
		14.4.3 Difference between IoT and Machine-to-Machine (M2M)
		14.4.4 IoT Layer Models
		14.4.5 Applications of IoT
		14.4.6 New Challenges Created by the IoT
		14.4.7 Security Requirements of the IoT
		14.4.8 Three Primary Targets of Attack against the IoT
		14.4.9 Hybrid Encryption Technique
		14.4.10 Hybrid Encryption Algorithm Based on DES and DSA
		14.4.11 Advanced Encryption Standard (AES)
		14.4.12 Requirements for Lightweight Cryptography
		14.4.13 Lightweight Cryptography in the IoT
		14.4.14 Prevention of Attacks on IoT
	14.5 Security of Smart Grids
		14.5.1 Smart Grid Challenges
		14.5.2 Smart Grid Layers
		14.5.3 Information Security Risks and Demands of a Smart Grid
		14.5.4 Smart Grid Security Objectives
		14.5.5 The Smart Grid System Can Be Divided into Three Major Systems
		14.5.6 Types of Security Attacks That Can Compromise the Smart Grid Security
		14.5.7 Cybersecurity Attacks in a Smart Grid
	14.6 Security of Scada Control Systems
		14.6.1 Components of SCADA Systems
		14.6.2 SCADA System Layers
		14.6.3 Requirements and Features for the Security of Control Systems
		14.6.4 Categories for Security Threats to Modern SCADA Systems
	14.7 Security of Wireless Sensor Networks (WSNs)
		14.7.1 WSN Layers
		14.7.2 Security Requirements in WSNs
		14.7.3 The Attack Categories in WSNs
		14.7.4 Attacks and Defense in WSNs at Different Layers
		14.7.5 Security Protocols in WSNs
	14.8 Security of Smart City
		14.8.1 Challenges and Benefits of Smart City
		14.8.2 The security and privacy of information in a smart city
	14.9 Security of Blockchain
		14.9.1 Features of Blockchain Technology
		14.9.2 Benefits and Challenges of Blockchain
		14.9.3 Advantages of Blockchain for Security
		14.9.4 Security Issues of Blockchain
	14.10 Exercises
Chapter 15: Artificial Intelligence Security
	15.1 Introduction
	15.2 Machine Learning
	15.3 Types of Machine Learning
		15.3.1 Supervised Learning
		15.3.2 Unsupervised Learning
		15.3.3 Semi-supervised Learning
		15.3.4 Reinforcement Learning
	15.4 Deep Learning
		15.4.1 Deep Learning Applications: A Brief Overview
		15.4.2 DL Network Layers
	15.5 Types of Deep Learning
		15.5.1 Multilayer Neural Network
		15.5.2 Convolutional Neural Networks (CNN)
		15.5.3 Recurrent Neural Networks (RNNs)
		15.5.4 Long Short-Term Memory Networks (LSTMs)
		15.5.5 Recursive Neural Network (RvNNs)
		15.5.6 Stacked Autoencoders
		15.5.7 Extreme Learning Machine (ELM)
	15.6 AI for Intrusion Detection System
	15.7 Exercises
Bibliography
Index




نظرات کاربران